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Predicting body temperature of endotherms during shuttling
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Abstract

This paper presents two models that can be used to predict the temporal dynamics of body temperature in

endotherms. A first-order model is based on the assumption that body temperature is uniform at all times, while a

second-order model is based on the assumption that animals can be divided in a core and a shell, the temperature being

uniform within each compartment. According to the second-order model, animals may be able to maintain their

internal organs at almost constant temperature during shuttling despite large variations in the temperature of peripheral

tissues. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The body temperature of animals may be subject to

long- and short-term fluctuations. Some of this varia-

bility is unrelated to environmental conditions: birds

and mammals kept under constant conditions of light

and temperature retain a number of endogenous

circadian rhythms. Activity and body temperature,

among other parameters, follow regular oscillations

with a periodicity close to 24 h (Aschoff, 1982).

Furthermore, the periodicity of body temperature is

not induced by the activity pattern itself (Hiddinga et al.,

1997; Strijkstra et al., 1999). Nevertheless, body

temperature is affected by environmental factors. The

relationship between body temperature and environ-

ment is well known in ectotherms, many of which have

little thermoregulatory abilities beyond the behavioural

choice of favourable microclimates. In many cases, body

temperature has a large impact on the locomotor

abilities of ectotherms: they are unable to forage

efficiently and/or avoid predators unless their body

temperature is sufficiently high. Because of the clear

ecological implications of body temperature for

ectotherms, the effects of ambient temperature on their

body temperature has been carefully studied at the

empirical (reviews in Avery, 1982; Huey et al., 1989) and

theoretical levels (Turner, 1987; O’Connor, 1999).

Ambient temperature can affect body temperature of

endotherms in at least two ways. Endotherms exposed to

low temperatures may go into hibernation, torpor or

hypothermia, reducing their body temperature to save

energy consumption. Diurnal animals (both ecto- and

endotherms) living in arid environments face the risk of

death by hyperthermia if they are exposed to the sun and

high temperatures during long periods. In principle,

evaporative cooling can be used to maintain body

temperature below ambient temperature. In practice,

water is so scarce in arid environments that individuals

can make little use of it for thermoregulation. An

alternative strategy is to allow body temperature to

increase during periods of exposure to the sun, and to

cool down by passive heat transfer when ambient

temperature decreases. Large animals, such as camels,

can allow their body temperature to fluctuate following

the day–night cycle of ambient temperature. Because of

their big thermal inertia and good insulation, large

animals can spend a full day in the sun making moderate

use of evaporative water-cooling. Body temperature

decreases again during the cooler night (Schmidt-

Nielsen, 1997).
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Unlike their larger neighbours, desert rodents cannot

stand long periods of exposure to the sun and heat.

Their thermal inertia and insulation are so small, that in

order to keep their body temperature within physiolo-

gical limits they would need to evaporate each day an

amount of water several times their body weight

(Schmidt-Nielsen, 1997). Small diurnal animals, there-

fore, cannot accumulate heat throughout the day and

release it to the environment at night. But they can use a

similar principle, in a shorter time scale. Small animals

can remain in the sun for a few minutes. They

accumulate heat and their body temperature increases

sharply. When body temperature approaches the lethal

threshold, small animals must search a thermal refuge

(normally a shade or burrow) where ambient tempera-

ture is lower than body temperature and heat can be

dissipated with little or no use of precious water. The

resulting continuous movement between a hot foraging

patch and a cool thermal refuge (or, in species such as

see-feeding iguanas, between a cold foraging patch and a

warm thermal refuge; Bartholomew and Lasiewski,

1965) is referred to as ‘‘shuttling’’ (Chappell and

Bartholomew, 1981; Bennett et al., 1984; Byman, 1985;

Vispo and Bakken, 1993; Hainsworth, 1995).

In order to study the ecology of desert animals, we

need a reasonable understanding of how ambient

temperature affects body temperature. The models

developed for reptiles (Turner, 1987; O’Connor, 1999)

are insufficient because they ignore the effect of

metabolic heat production (but see Spotila et al.,

1973). Specific models developed for humans (Werner

and Webb, 1993) are of little practical use because they

require the input of a large number of parameters to

make predictions. Hainsworth (1995) has developed a

simple model that incorporates metabolic heat produc-

tion. Hainsworth’s model was originally applied to

antelope ground squirrels, Ammospermophilus leucurus,

and later extended to other small desert mammals

(Degen, 1997; Bozinovic et al., 2000).

If the distinction between ecto- and endotherms is

somewhat artificial, it becomes painfully blurred when

we consider the problem of shuttling. In effect, a

shuttling antelope ground squirrel has given up any

hope to thermoregulate in the usual sense. Most

mammals, disregarding the daily pattern of temperature

variation, keep their body temperature within very

narrow ranges through changes in their metabolic rates

and evaporative water-cooling. Shuttling mammals do

not use these mechanisms to keep their body tempera-

ture fixed. Indeed, a shuttling antelope ground squirrel is

(from this point of view) like a lizard with high metabolic

rate. The models developed here can thus be applied to

ectotherms by using the appropriate parameter values.

In a laboratory study of shuttling between heated

food patches and cooler habitat, Bozinovic et al. (2000)

conclude that degus, Octodon degus, ‘‘used food patches

during shorter bouts of time than predicted’’ by their

simulations. As ever so often, this deviation from

expectations can be explained in a number of ways.

Among others: (a) as a safety measure. Degus need not

stay in the food patch so long as their body temperature

is below the lethal threshold (about 421C; Bozinovic

et al., 2000). It may be safer to leave when temperature is

11 or even 21 below the threshold. (As there is bound to

be some stochasticity: the lethal threshold is more a

heuristic concept than a physiological entity. It would be

more realistic to assume that the probability of entering

hyperthermia increases as body temperature increases.

With this assumption, models of optimal patch use

would have to be cast within a framework that would be

mathematically equivalent to signal detection theory.)

(b) Physiological costs. A high body temperature, even

well below the lethal ‘‘threshold’’ may be physiologically

costly. For instance, a high body temperature might be

energetically costly if it is associated with a higher

turnover of cell machinery.

There is, however, another reason why degus might

stay in the patches shorter than expected: body

temperature in a heated patch might increase faster

than predicted. Bozinovic et al. (2000) use an equation

derived by Hainsworth (1995) to predict the temporal

course of body temperature in a heated patch. A more

rigorous treatment of Hainsworth’s model produces

somewhat different results. In this paper, I first

reanalyse Hainsworth’s (1995) model (the ‘‘first-order’’

model). Later, I consider the implications of using a

core-shell model (‘‘second-order’’ model) with metabolic

heat production. The second-order model is an exten-

sion of Turner’s (1987) core-shell model.

2. First-order models

The model presented in this section was already

developed by Bakken and Gates (1975). The formalism

they use is rather daunting and it appears that their

work has escaped the attention of field biologists.

Eppley (1994) uses a special case of this model to study

cooling rates in developing endotherms. The purpose of

this section is to present the model in a way that can be

easily understood by researchers lacking a thorough

biophysical training and to explain why Hainsworth’s

(1995) model is inappropriate.

First, we consider an inert body in thermal disequili-

brium with its environment. Assuming that the tem-

perature of the body, Tb (1C), is homogeneous and that

the operative temperature is Te (1C), we have that the

derivative of the body temperature with respect to time,

tðsÞ; is given by

dTb

dt
¼

Te � Tb

RC
: ð1Þ
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where C is the thermal capacitance of the body (J 1C�1)

and R is the heat-transfer resistance between the body

and its environment (1CW�1). (For a discussion of

operative temperature, see Bakken, 1992.) The physical

interpretation of Eq. (1) is as follows: the rate of increase

of body temperature is equal to the rate of heat influx

divided by the thermal capacitance of the body (the

amount of heat required to increase body temperature

by 11C). Heat influx is itself equal to the difference

between ambient and body temperature divided by the

heat-transfer resistance (a measure of how difficult it is

for heat to enter the body).

Eq. (1) can be integrated to obtain the temporal

dynamics of temperature in an inert body. Live animals,

however, differ from inert bodies in two important

respects: (1) they produce heat internally as the result of

activity and metabolic processes and (2) they can induce

water evaporation for cooling. These processes have

important effects on body temperature and must be

incorporated to Eq. (1).

Let M(W) be the total rate of metabolic heat

production and E(W) the rate at which metabolic heat

is dissipated through evaporative cooling. The rate of

increase of body temperature due to metabolic heat

production (corrected for evaporative cooling) is then

the net heat production in the body divided by its heat

capacitance

M � E

C
ð2Þ

and therefore the rate of change of body temperature is

given by the sum of two terms; one representing heat

influx (as in Eq. (1)) and another representing internally

produced heat

dTb

dt
¼

Te � Tb

RC
þ

M � E

C
: ð3Þ

(The precise form of this equation will depend on the site

where evaporative cooling takes place; see Bakken and

Gates, 1975. A detailed discussion of the effects of

evaporative cooling for second-order models is given in

Appendix A.)

After rearrangement, we can express Eq. (3) as

dTb

dt
¼

TN � Tb

RC
; ð4Þ

where the asymptotic body temperature, TN; is

TN ¼ Te þ ðM � EÞR: ð5Þ

Assuming that all parameters in (4) are independent of

body temperature, integration of Eq. (4) is straight

forwards and leads to

Tb ¼ TN þ ðT0 � TNÞ e�t=ðRCÞ; ð6Þ

where T0 is body temperature (1C) at time t ¼ 0:
Comparison of Eqs. (1) and (4) shows that the meta-

bolic heat production changes the asymptotic body

temperature, but not the exponential time constant. The

thermal capacitance and heat-transfer resistance of the

body determine the time constant independently of

metabolic heat production.

Eq. (6) is formally different from the expressions

developed by Hainsworth (1995), who integrated Eq. (1)

first and then added as a correction the metabolic heat

production. The most relevant question, however, is

whether the actual time courses of heating and cooling

predicted by Eq. (6) and by Hainsworth’s model are

sufficiently different to be biologically meaningful. To

explore this possibility, we can compare the predictions

of both models for degus (Fig. 1) in the experimental

conditions used by Bozinovic et al. (2000). According to

the data provided by Bozinovic et al. (2000), the time

required for O. degus to reach a body temperature of

421C starting from 371C with Te¼ 501C would be

4.98min according to Eq. (6) and 7.89min according

to Hainsworth’s model. For Te¼ 601C; this times

become 2.82 and 3.63min, respectively. Hence, for

O. degus, Hainsworth’s model overestimates maximum

patch residence time by 58% and 29% at 501C and

601C, respectively. It is not surprising, then, that degus

Fig. 1. Heating curves showing the increase in body tempera-

ture of degus foraging at different ambient temperatures: (a)

Te¼ 501C; (b) Te¼ 601C: Black circles represent the predictions

according to Eq. (6), empty circles according to Hainsworth’s

(1995) model. C¼ 686:2 J 1C�1; R¼ 1:141CW�1 and

M ¼ 2:434W (Bozinovic et al., 2000). The line represents body

temperature when metabolic rate depends on body temperature

(Q10 ¼ 2). The section ‘‘body temperature effects on metabolic

rate’’ explains how this line is calculated.
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remain in the foraging patch shorter than predicted by

Bozinovic et al. (2000).

The accuracy of Hainsworth’s approximation, how-

ever, depends on the parameter values. For the antelope

ground squirrel, the approximation is excellent for

practical purposes. Using the parameter values mea-

sured by Chappell and Bartholomew (1981) we can

compare the predictions of Eq. (6) and Hainsworth’s

model (Fig. 2). Although Hainsworth’s model

underestimates asymptotic body temperatures of ground

squirrels exploiting patches by 111C (not shown in the

figure), body temperatures predicted by both models are

almost indistinguishable in the physiological range. In

general, when the operative temperature is much higher

than the maximum body temperature, Hainsworth’s

model will provide a good approximation unless

metabolic heat production is very large. On the other

hand, if operative temperature is similar to the

maximum body temperature (as was the case with degus

at 501C), the approximation will be poor. Since

Hainsworth’s model is not mathematically simpler than

Eq. (6), there seems to be no reason to use his

approximation.

2.1. Body temperature effects on metabolic rate

In deriving Eq. (6), we have assumed that the different

parameters (thermal capacitance and heat-transfer

resistance, metabolic rate and evaporative cooling) are

independent of body temperature. The assumption is

justified for the thermal capacitance, which is a physical

property of the organism, not under its direct control,

and relatively constant unless body temperature ap-

proaches the freezing or boiling points of water.

Evaporative cooling and heat-transfer resistance are,

to a large extent, under the control of the organism.

They are not temperature independent, but it will often

be the case that they are adjusted to meet environmental

conditions and that they remain somewhat independent

of body temperature. The assumption that is less likely

to be justified, however, is that metabolic rate is

independent of body temperature (Bakken and Gates,

1975; Eppley, 1994). The rate of physiological processes

increases with temperature in a roughly exponential

way, rates increasing two- to three-fold when tempera-

ture increases by 101C. If metabolic rate increases with

body temperature exponentially, how will the predic-

tions of Eq. (3) be affected? Let us start by rewriting (3)

as

dTb

dt
¼

Te � Tb

RC
þ

M0e
qTb � E

C
; ð7Þ

where q (1C�1) is the exponential rate of increase in

metabolic rate (with Q10 ¼ e10q) and M0 is metabolic

rate at 01C. We can now study the steady states of this

differential equation. Let

M� ¼
eqRE�qTe�1

Rq
: ð8Þ

A bit of algebra shows that if M0 > M� there is no

steady state for (7) and body temperature increases to

infinity. If M0 ¼ M� there is an unstable steady state,

and if M0oM� there are two steady states, at T1 and T2

(T1oT2). The steady state at T1 is stable, but the steady

state at T2 is unstable: if the initial temperature is

Fig. 2. Cooling (a) and heating (b, c) curves showing the time

course of body temperature of antelope ground squirrels

foraging at different ambient temperatures: (a) Te¼ 321C; (b)

Te¼ 501C; (c) Te¼ 701C: Black circles represent the predictions

according to Eq. (6), empty circles according to Hainsworth’s

(1995) model. During cooling, C¼ 343:1 J 1C�1;
R ¼ 1:821CW�1, M ¼ 0:55W and E ¼ 0:165W; during heat-

ing, C¼ 343:1 J 1C�1; R¼ 10:01CW�1, M ¼ 1:7W and

E ¼ 0:561W (Hainsworth, 1995). The line represents body

temperature when metabolic rate depends on body temperature

(Q10 ¼ 2). The section ‘‘body temperature effects on metabolic

rate’’ explains how this line is calculated.
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T0oT2; temperature tends to T1: But if T0 > T2 body

temperature increases to infinity. Fig. 3 shows the

relationship between M� and Te assuming that

R¼ 11CW�1 and Q10 ¼ 2: (Notice that M� ¼ 1 implies

a metabolic rate of 13W at 371C.)

To study the quantitative effect of (7), I have

integrated this equation with the parameters corre-

sponding to degus and antelope ground squirrels. I have

chosen the values of M0 so that metabolic rate is equal

for (3) and (7) at the midpoint of the temperature range

considered. (The integration can be done numerically

using Runge-Kutta’s method, Press et al., 1992.) The

predictions of (7) appear as a solid line in Figs. 1 and 2:

clearly, there is little difference between the predictions

of (3) and (7). For these particular cases, the effect of

body temperature on metabolic rate can be ignored. The

reason why the two models agree for these examples is

that the derivative of body temperature in (7) can be

decomposed in two terms: a linear and an exponential

term. Where the linear term dominates, Eqs. (3) and (7)

make similar predictions. It would seem that, for those

ambient temperatures such that (7) has a stable

equilibrium, the effect of body temperature on metabolic

rate could be ignored as a first approximation.

3. Second-order models

I will consider now second-order models of tempera-

ture dynamics. Eq. (6) itself is an approximation. It

assumes that body temperature is homogeneous. If

temperature gradients are present within an animal’s

body, more complicated models must be used. The

degree of sophistication required for an application will

depend on the magnitude of the errors that can be

tolerated. It is possible to model the dynamics of body-

temperature fluctuations with a great deal of detail (see

e.g., Spotila et al., 1973; Werner and Webb, 1993;

O’Connor, 1999), but the more sophisticated the model

the larger the number of parameters that must be

included. For well-studied systems where the relevant

parameters are known, this needs not be a problem.

Most often, however, the thermal capacitance of and

heat-transfer resistance between the different compo-

nents of the model will not be known. If these

parameters must be estimated (or even worse, guessed),

the predictive value of the models will be severely

reduced. It is unclear that we gain anything from using a

high-order model with unreliable parameters rather than

a first-order model (Eq. (6)) with more reliable para-

meters. In this paper, I will not consider anything

beyond second-order models.

To understand the physical processes behind a

second-order model, we will consider a simple extension

of Turner’s (1987) core-shell model. The core-shell

model assumes that the body can be divided in two

thermal compartments (the inner core and the outer

shell) and that temperature is homogeneous within each

compartment. Core and shell are conceptual idealisa-

tions and, in practice, it will seldom be possible to

partition an animal’s body in such compartments in any

clear-cut fashion. Let us denote by TcðTsÞ; CcðCsÞ and

McðMsÞ the temperature (1C), thermal capacitance

(J 1C�1) and metabolic heat production (W) of the core

(shell), respectively. Let Ri be the heat-transfer resis-

tance (1CW�1) between core and shell, and Re the

heat-transfer resistance between the shell and the

environment (Fig. 4). With the assumption of tempera-

ture homogeneity, the dynamics of core and shell

Fig. 3. Relationship between M� and Te assuming that

R¼ 11CW�1 and Q10 ¼ 2: Eq. (7) has a stable steady state in

the region below the curve.

Fig. 4. Basic components of the core-shell model with meta-

bolic heat production. The animal is divided in two thermal

compartments. The inner core has a uniform temperature of Tc

(1C), thermal capacitance Cc (J 1C�1) and metabolic heat

production Mc (W). The outer shell has a uniform temperature

of Ts (1C), thermal capacitance Cs (J 1C�1) and metabolic heat

production Ms (W). The internal (core-shell) heat-transfer

resistance is Ri (1CW�1), and the external (shell-environment)

heat-transfer resistance is Re (1CW�1).
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temperatures are determined by

dTc

dt
¼

Ts � Tc

RiCc
þ

Mc

Cc
;

dTs

dt
¼

Te � Ts

ReCs
�

Ts � Tc

RiCs
þ

Ms

Cs
: ð9Þ

The first equation in (9) is equivalent to Eq. (3), if we

recognise that the thermal ‘‘environment’’ of the core is

the shell. (Surface evaporative cooling has been

neglected for simplicity: Mc should be understood as

net rate of heat production at the core. For a full

discussion of evaporative cooling at the skin and fur, see

Appendix A.) The second equation is similar, but it

includes two flux terms: heat exchange between the

environment and the shell and heat exchange between

the shell and the core.

For a constant environmental temperature, this

system of differential equations can be solved

using standard techniques (e.g. McCann, 1982), leading

to

Tc ¼ Ae�t=t1 þ Be�t=t2 þ TN;c;

Ts ¼ A
at1 � 1

at1
e�t=t1 þ B

at2 � 1

at2
e�t=t2 þ TN;s; ð10Þ

where

TN;c ¼ Te þ ðRi þ ReÞMc þ ReMs;

TN;s ¼ Te þ ReðMc þ MsÞ;

t1 ¼
2

a þ d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � d Þ2 þ 4ac

q ;

t2 ¼
2

a þ d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � d Þ2 þ 4ac

q ;

a ¼
1

RiCc
;

c ¼
1

RiCs
;

d ¼
Ri þ Re

RiReCs
: ð11Þ

The expressions for the asymptotic temperatures

change somewhat if surface evaporative cooling is

considered (see Appendix A). When the parameters in

the right-hand side of (9) are piecewise constant (i.e.,

they are constant between t0 and t1; t1 and t2y but

change discontinuously at t1; t2y), as it happens

(approximately) during shuttling, the solution is the

same but the time exponential constants t1 and t2 must

be calculated according to (11) for each interval and the

integration constants A and B must be determined

between t0 and t1 according to some boundary condi-

tions and for each subsequent interval imposing the

continuity of core and shell temperature at each

transition. It is probably easiest (if somewhat unortho-

dox) to reset time to zero at each transition and calculate

the values of the integration constant between ti and tiþ1

from

Tcðt ¼ tiÞ ¼ Ai þ Bi þ TN;c;

Tsðt ¼ tiÞ ¼ Ai
at1 � 1

at1
þ Bi

at2 � 1

at2
þ TN;s: ð12Þ

All parameters in Eq. (12) can be calculated from

Eq. (11), so if we calculate Tcðt ¼ tiÞ and Tsðt ¼ tiÞ from

Eq. (10) with the values of Ai�1 and Bi�1 previously

calculated and substitute them in Eq. (12) we obtain a

system of two equations with two unknowns: Ai and Bi:
(The coefficients of Ai and Bi in Eq. (12) are such that

the system of equations always has a unique solution.)

The values of A0 and B0 can be obtained, for example,

from Eq. (12) substituting in the left-hand side the initial

values of core and shell temperature.

With respect to the calculation of integration con-

stants, it must be pointed out that Turner’s (1987)

equation (15a) and Voss and Hainsworth’s (2001)

Eq. (10) were derived on the assumption that at t ¼ 0

core temperature has a certain value (T0;c) and that its

time derivative equals zero. This condition is normally

not met during shuttling, since the derivative of core

temperature equals zero only at the steady state and

shuttling is all about preventing steady states. (If an

animal could forage in a patch when its body

temperature reached the steady state it would not need

to shift to a thermal refuge, and hence there would be no

shuttling.) With our notation, Turner’s (1987) equation

becomes

Tc ¼ ðT0;c � TN;cÞ

� �
t1

t2 � t1
e�t=t1 þ

t2
t2 � t1

e�t=t2

� �
þ TN;c: ð13Þ

Fig. 5 shows the discrepancies in the predictions of using

Eqs. (12) and (13) to predict an animal’s core tempera-

ture during shuttling. We consider an antelope ground

squirrel shuttling between a foraging patch with

temperature Te¼ 601C and a thermal refuge with

Te¼ 301C: Our hypothetical ground squirrel spends, at

each shuttling cycle, 4min in the thermal refuge and two

and a half minutes in the patch. After a certain number

of cycles, its body temperature reaches a steady state, in

the sense that the animal always has the same

temperature when it reaches the thermal refuge. (This

steady state depends on the amount of time spent in each

patch.) Fig. 5a shows the predictions calculated in two

different ways. For the empty circles we calculate Ai and

Bi according to Eq. (12). For the black circles, we

calculate Ai and Bi disregarding shell temperature and

assuming that core temperature is continuous and that

its derivative equals zero at the start of each phase of the

cycle. (Eq. (13): this is what equation (15a) from Turner

(1987) and Eq. (10) from Voss and Hainsworth (2001)

amount to.) As we can see from Fig. 5a, Eq. (13)

underestimates core temperature at the steady state by
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almost 21C relative to Eq. (12). In Fig. 5b we look at the

same phenomenon from a different perspective. The

empty circles give the same data as in Fig. 5a. The black

circles are calculated from Eq. (13), but looking at a

single shuttling circle that starts at the same temperature

as for the empty circles. With the parameter values that

we have used, we notice that cooling proceeds faster

according to Eq. (13) than to Eq. (12), while heating

proceeds faster according to Eq. (12) than to Eq. (13).

This is because the derivative of core temperature is

positive at the start of the cooling and heating phases,

due to the effect of the shell. The net effect of these

effects is that, when core temperature is calculated

according to Eq. (13), core temperature is lower at the

end than at the beginning of the shuttling cycle. In other

words, according to Eq. (13) the animal is above the

steady state (as could be seen from Fig. 5a).

Fig. 5 shows that using Eqs. (12) and (13) to calculate

the integration constants leads to markedly different

results. But which method is better and why? When we

solve a differential equation, we end up with a number

of integration constants that must be calculated from

some boundary conditions. We often derive these

constants from ‘‘initial’’ conditions: the state of our

system at time t ¼ 0: The name ‘‘initial’’ conditions gives

the misleading impression that the system has no prior

history. If we build an animal we can select its core and

shell temperature whichever way we wish, and we could

potentially have individuals satisfying either Eq. (12) or

(13). With a shuttling animal, we have to calculate A and

B in Eq. (10) every time that the animal moves from one

patch to another. But we are no longer able to select the

state of the animal. Even if, for convenience, we reset

time to t ¼ 0 at the start of every phase (as implicitly do

Turner, 1987, and Voss and Hainsworth, 2001), we

cannot delete the history of the animal, and hence we

cannot choose the initial conditions: they will be given

by the state of the animal at the end of the previous

phase. Because core and shell temperatures (according

to Eq. (9)) are continuous in time even if the environ-

mental parameters are discontinuous (provided that the

discontinuity is finite: if ambient temperature became

equal to infinity things would be otherwiseFbut this is

clearly of no biological relevance), we must enforce that

core and shell temperatures at the beginning of the

cooling phase are the same as at the end of the foraging

phase, and vice versa. For this, we must use Eq. (12).

Indeed, if we calculate A and B as in Eq. (13) and we go

back to (10), we can see that shell temperature is

discontinuous. Voss and Hainsworth (2001) present a

second-order model that does not include shell tempera-

ture. This, however, does not imply that we gain a

degree of freedom for the calculation of the integration

constants. In their model, we start with a single second-

order differential equation for body temperature. If we

have an animal shuttling between times t ¼ 0 and

t ¼ tend; and if the animal changes habitat at times

t1; t2y then we can safely use Eq. (13) (Eq. (10) in Voss

and Hainsworth, 2001) to predict body temperature

between t ¼ 0 and t ¼ t1: Between t1 and t2; however,

this is no longer correct. Their model is formulated as

a
d2T

dt2
þ b

dT

dt
þ cT ¼ f ðtÞ ð14Þ

and according to this model, when f ðtÞ presents a

discontinuity at time t1; then TðtÞ is continuous at t1 and

its derivative presents a discontinuity of fixed magni-

tude. In other words, T 0ðtÞ cannot be calculated for t1;
but we can calculate its limiting values for tot1ðT 0ðt1�ÞÞ
and for t > t1ðT 0ðt1þÞÞ; and the value of DT 0 ¼
T 0ðt1þÞ � T 0ðt1�Þ can be calculated from the magnitude

Fig. 5. Core temperature of shuttling antelope ground squirrels

when the integration constants of Eq. (10) are calculated

according to Eq. (12), empty circles, or Eq. (13), black circles.

(a) A shuttling cycle at the steady state predicted by each model.

(b) The data from Eq. (12) correspond to the steady state, but

those from (13) represent a single shuttling cycle starting at the

same temperature as the steady state of Eq. (12). Parameter

values are those provided by Hainsworth (1995) and used for

Fig. 1, except that heat capacitance is divided in two

components (35% shell, 65% core), and the same is done for

metabolic rate (20% shell, 80% core). The compartmentalisa-

tion of heat capacitance and metabolic rate is arbitrary. During

cooling, Cc¼ 223:0 J 1C�1; Cs¼ 120:1 J 1C�1; Ri¼ 4:001CW�1,

Re¼ 1:821CW�1, Mc ¼ 0:44W and Ms ¼ 0:11W; during heat-

ing, Cc¼ 223:0 J 1C�1; Cs¼ 120:1 J 1C�1; Ri ¼ 4:001CW�1;
Re¼ 10:01C W�1; Mc ¼ 1:36W and Ms ¼ 0:34W.
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of the step in f ðtÞ: Now, we know T 0ðt1�Þ because it is

the value of the derivative of body temperature at the

moment when the animal leaves one patch and we can

calculate DT 0 from f ðTÞ: Hence, we can calculate the

value of the derivative of body temperature at the

moment when the animal reaches the new patch,

T 0ðt1þÞ ¼ DT 0 þ T 0ðt1�Þ: This (and not T 0ðt1þÞ ¼ 0) is

the second boundary condition that we must use if we

want to apply Voss and Hainsworth’s (2001) model to

shuttling.

Eq. (11) gives the asymptotic core and shell tempera-

tures (TN;c and TN;s), and the exponential time

constants (t1 and t2), as a function of six physical

parameters (Fig. 4). In practice, however, it is possible to

measure the time constants and the asymptotic tem-

perature without having to measure the heat-transfer

resistance, heat capacitance and metabolic rates of the

core and shell components (remember that A and B are

integration constants that must be determined from the

initial conditions: they don’t need to be measured). The

time constants and asymptotic temperatures can be

derived from cooling and heating curves, as described by

Turner (1987) and Voss and Hainsworth (2001). Hence,

the relationships given by Eq. (11) can be used to predict

the effect of increasing or decreasing the value of a

certain parameter (such as the metabolic rate of the

core) on the temporal dynamics of body temperature.

But if we want to predict the temporal dynamics of a

real animal’s body temperature, it is easier to measure

the time constants and the asymptotic temperature from

heating and cooling curves.

3.1. Comparison of first- and second-order models

Consider two animals with the same mass, same total

heat capacitance and net metabolic heat production and

with the same heat-transfer resistance between the

animal and its environment. Let us assume that one

animal has uniform temperature throughout its body

while the other has two compartments at different

temperature (the core and the shell). The temperature

gradient between core and shell can be obtained if there

is limited blood flux between the two compartments

and/or if there are counter current heat exchangers

(Scholander and Schevill, 1955). A first-order model will

be appropriate to describe the dynamics of body

temperature in the first animal, but a second-order

model will be required for the second one. Let us now

consider how a certain shuttling regime affects both

animals. (For simplicity, we will refer to these hypothe-

tical animals as first- and second-order animal.)

We first notice that a first-order model is a limiting

case of a second-order model: if, in a core-shell model

the heat-transfer resistance between core and shell

decreases, heat flow between the two compartments is

enhanced and their temperatures become more and

more homogeneous. In the limiting case when Ri ¼ 0;
there is no difference between core and shell tempera-

ture. When this happens, of the two exponential time

constants that appear in Eq. (10), one tends to zero and

the other becomes equal to Re	ðCc þ CsÞ: This is

precisely the value of the time constant in a first-order

model, Eq. (6), as the total heat capacitance of a body is

the sum of the heat capacitance of its parts.

The presence of a heat-transfer resistance between

core and shell (Ri > 0) has two effects. On the one hand

it retards the dissipation of the heat generated at the

core. This implies that the asymptotic core temperature

of a second-order animal is higher than the asymptotic

body temperature of a first-order animal when they are

in the same environment. Comparison of Eqs. (5) and

(11) shows that the difference in asymptotic tempera-

tures is the product Ri	Mc; and hence it tends to zero

with Ri: Besides, the heat-transfer resistance between

core and shell introduces a time lag in the response of

the core to changes in environmental temperature.

During shuttling, core and shell temperatures oscillate.

But the magnitude of the oscillations is larger for the

shell than for the core. Limiting the heat flow between

core and shell thus provides animals with a mechanism

to control the temperature of sensitive internal organs

even when the skeletal muscles and peripheral tissues are

exposed to wide temperature fluctuations.

Animals shuttling between inhospitable foraging

patches and thermal refuges try to minimise heat

exchange with their environment in the foraging patch

and to maximise it in the refuge. The heat-transfer

resistance between the animal and its environment, Re;
should be as high as possible in the foraging patch (to

minimise heat exchange and maximise the amount of

time that the patch can be exploited) and as low as

possible in the refuge (to maximise heat exchange with

the environment and minimise the time spent in the

refuge). These expected differences between heat-trans-

fer resistance in foraging patches and thermal refuges do

correspond to empirical observations (e.g., Chappell and

Bartholomew, 1981; Bozinovic et al., 2000). The heat-

transfer resistance between core and shell, Ri; on the

other hand, should follow a different pattern. Let us

consider a desert rodent shuttling between a cool barrow

and a hot foraging patch. To maximise the time spent in

the foraging patch, the animal must reduce the rate of

increase of core temperature. When it first enters the

foraging patch, shell temperature is lower than core

temperature. A low Ri will have a cooling effect for the

core (see Eq. (9)). When the shell becomes warmer than

the core, on the other hand, a low Ri will maximise heat

influx into the core and will lead to an increase in its rate

of heating. As a result, then, animals should have a low

Ri when they arrive to the foraging patch and a high Ri

when shell temperature becomes higher than core

temperature. In the thermal refuge, Ri should remain
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high until shell temperature drops below core tempera-

ture, and then it should decrease to facilitate cooling.

The differences between the predictions of first- and

second-order models help us understand why the

development of second-order models is important. The

presence of internal heat-transfer resistances introduces

important changes in the temporal dynamics of body

temperature. Because animals can and do modify these

heat-transfer resistances for thermoregulatory purposes,

we need to be able to predict the effect of these changes

if we are to understand how animals react to different

environmental challenges. Second-order models consti-

tute the simplest approximation to this study. It is

important to realise, however, that the distinction

between core and shell is a heuristic one. It is not

possible to divide an animal a priori between its core and

its shell compartments. Indeed, the most useful division

between core and shell may be a function of ambient

temperature, since it depends on the presence of heat-

transfer barriers that can be adjusted by modifying the

pattern of blood flux.

4. Discussion

This paper has considered two mathematical models

that can be used to predict the temporal dynamics of

body temperature as a function of environmental

conditions. The models can help us understand the

ecological limits of different species faced with tempera-

ture constraints and water limitations.

The first-order model, originally derived by Bakken

and Gates (1975), can be used with relatively little

information. To apply it, we need three parameters: the

heat-transfer resistance of the animal, its thermal

capacitance and its metabolic heat production. Of these

three, only the metabolic heat production needs to be

measured. This is because heat-transfer resistance can be

obtained from the metabolic rate of animals at rest

(McNab, 1980), and the thermal capacitance is the

product of the animal’s mass (g) by its (average) specific

heat capacity (J g�1
1C�1). The specific heat capacity of

rodents is 3.431 J g�1
1C�1 (Hainsworth, 1995), and the

same value can probably be used for most birds and

mammals.

Second-order models require more information before

they can be applied. The relevant information (two time

constants and asymptotic temperatures for each ambient

temperature) is not difficult to obtain, but it cannot be

readily estimated and must be measured for each species

of interest. The investment of time and resources into

measuring the relevant time constants will be only

worthwhile if the predictions from the first-order model

deviate substantially from the experimental data. This is

indeed the case in reptiles (Turner, 1987) and in bird

eggs (Voss and Hainsworth, 2001), but there is, to my

knowledge, no relevant data to ascertain the merits of

first- and second-order models in endotherms. In view of

the formal similarities between the models for ecto- and

endotherms, it seems likely that the second-order

correction provides a substantial improvement for

endotherms as well.

Theoretical models of temperature regulation can be

used to predict variations in body temperature, but they

also have heuristic value, since they can help us

understand the consequences of changing certain para-

meters that are associated with biophysical properties of

the organism. In this sense, the second-order model

shows that precise thermoregulation of sensitive internal

organs can be achieved despite wide fluctuations in the

temperature of peripheral tissue. It also suggests a

physiological mechanism (control of the heat-transfer

resistance between core and shell) that can be used to

achieve this goal.
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Appendix A

The second-order model, as described in the main

body of this article, does not take into account where

evaporative cooling takes place. When, for whatever

reason, one wants to distinguish between respiratory

and surface evaporative cooling, the heat-flux process

must be modelled in more detail. Here we consider the

second-order version of what Bakken and Gates (1975)

call an ‘‘animal with pelage and significant conductance

to the ground’’. (If one wants to consider a simpler

animal, it will be sufficient to choose the corresponding

parameter values. For instance, we obtain an animal

with no conductance to the ground by setting the heat-

transfer resistance between the animal and the ground

equal to infinity.) This model animal differs from the

one represented in Fig. 4 in the way it dissipates heat to

the environment:

* There is a direct path of heat flux between the

animal’s shell and the ground. The ground is at

temperature Tg (1C) and the heat-transfer resistance

between shell and ground is Rg (1CW�1).
* There are two interfaces between the shell and the

environment: the skin and the fur. Their tempera-

tures are Tr0 and Tr1 (1C), respectively. We assume

(Bakken and Gates, 1975) that they have zero heat
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capacity (they cannot store heat), which in turn

implies that any heat they receive from the outside is

transferred inwards. We denote by Rs and Rf the

heat-transfer resistances (1CW�1) between shell and

skin and skin and fur, respectively. The rates of

evaporation at skin and fur are Es and Er (W),

respectively.

The equation describing heat exchange at the fur

(Bakken and Gates, 1975) is

HðTr1 � TaÞ þ seT4
r1 þ Er ¼

Tr0 � Tr1

Rf
þ Qa: ðA:1Þ

In the left-hand side we have heat losses to the

environment. The first term represents convection

(H is the convection coefficient, W 1C�1 and Ta

the air temperature, 1C), the second thermal radiation

(the Stefan-Boltzmann constant is s ¼ 5:67� 10�8

Wm�2K�4 and the emissivity e ranges from 0 to 1)

and the third water evaporation. In the right-hand side,

the first term represents heat gains through conductance

from the skin and the second absorbed radiation (in W).

To simplify the model we assume that thermal radiation

is linear in fur temperature (Bakken and Gates, 1975),

leading to the following equation:

HðTr1 � TaÞ þ rTr1 þ Er ¼
Tr0 � Tr1

Rf
þ Qn; ðA:2Þ

where

r ¼ 4se %T 3
r1; ðA:3Þ

Qn ¼ Qa þ 3se %T4
r1 ðA:4Þ

and %Tr1 is the mean surface temperature.

Heat exchanges at the skin takes place through

evaporation and conductance between fur and skin or

shell and skin, leading to

Es ¼ �
Tr0 � Ts

Rs
�

Tr0 � Tr1

Rf
: ðA:5Þ

Finally, the equations for shell and core are very similar

to the ones already used, except that the shell equation

incorporates direct conductance to the ground

Cs
dTs

dt
þ

Ts � Tr0

Rs
¼ Ms �

Ts � Tc

Ri
�

Ts � Tg

Rg
ðA:6Þ

and the equation for the core includes respiratory

evaporative cooling (Ec; in W)

Cc
dTc

dt
þ

Tc � Ts

Ri
¼ Mc � Ec: ðA:7Þ

Of these equations, only two are differential equations,

while (A.2) and (A.5) are algebraic equations. Hence, the

entire set can be reduced with some algebra to a set of

two differential equations: Eq. (A.7) and

Cs
dTs

dt
¼ Ms � asEs � arEr �

Ts � Te

I
�

Ts � Tc

Ri
; ðA:8Þ

where

Te ¼
RgðHTa þ QnÞ þ 1þ ðH þ rÞðRs þ Rf Þ½ �Tg

ðRs þ Rf þ RgÞðH þ rÞ þ 1
;

I ¼
½1þ ðH þ rÞðRs þ Rf Þ�Rg

ðRs þ Rf þ RgÞðH þ rÞ þ 1
;

as ¼
1þ ðH þ rÞRf

1 þ ðH þ rÞðRs þ Rf Þ
;

ar ¼
1

1 þ ðH þ rÞðRs þ Rf Þ
:

ðA:9Þ

Notice that Eqs. (A.7) and (A.8) are formally identical

to Eq. (9) with I taking the role of Re and when the

metabolic rates are substituted by ‘‘net’’ values to

correct for evaporative cooling. In the case of the core,

the net metabolic rate that must be used is just metabolic

heat produced minus heat used for evaporation in the

lungs and mouth cavity (Eq. (A.7)), but in the case of the

shell evaporative cooling at skin and fur must be

‘‘discounted’’ by multiplicative factors as and ar

(Eq. (A.8)) that are always less than one (Eq. (A.9)). In

particular, this implies that respiratory water evapora-

tion is more efficient for cooling than surface evapora-

tion.

When this model is solved for constant ambient

temperature, we obtain once again Eq. (10) as solution

except that now

TN;c ¼ Te þ ðRi þ IÞðMc � EcÞ þ IðMs � asEs � arErÞ;

TN;s ¼ Te þ IðMc � Ec þ Ms � asEs � arErÞ;

t1 ¼
2

a þ d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � d Þ2 þ 4ac

q ;

t2 ¼
2

a þ d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � d Þ2 þ 4ac

q ;

a ¼
1

RiCc
;

c ¼
1

RiCs
;

d ¼
Ri þ I

RiICs
: ðA:10Þ
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